Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
authorea preprints; 2022.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.165158283.35240909.v2

ABSTRACT

Background: The Omicron (lineage B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wales, UK on 3 December 2021. The aim of the study was to describe the first 1000 cases of the Omicron variant by demographic, vaccination status, travel and severe outcome status and compare this to contemporaneous cases of the Delta variant. Methods: Testing, typing and contact tracing data were collected by Public Health Wales and analysis undertaken by the Communicable Disease Surveillance Centre (CDSC). Risk ratios for demographic factors and symptoms were calculated comparing Omicron cases to Delta cases identified over the same time period. Results: By 14th December 2021, 1000 cases of the Omicron variant had been identified in Wales. Of the first 1000, just 3% of cases had a prior history of travel revealing rapid community transmission. A higher proportion of Omicron cases were identified in individuals aged 20-39 and most cases were double vaccinated (65.9%) or boosted (15.7%). Age adjusted analysis also revealed that Omicron cases were less likely to be hospitalised (0.4%) or report symptoms (60.8%). Specifically a significant reduction was observed in the proportion of Omicron cases reporting anosmia (8.9%). Conclusion: Key findings include a lower risk of anosmia and a reduced risk of hospitalisation in the first 1000 Omicron cases compared to co-circulating Delta cases. We also identify that existing measures for travel restrictions to control importations of new variants identified outside the UK did not prevent the rapid ingress of Omicron within Wales.


Subject(s)
Coronavirus Infections , Olfaction Disorders
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.02.22269960

ABSTRACT

Introduction Prisons are susceptible to outbreaks. Control measures focusing on isolation and cohorting negatively affect wellbeing. We present an outbreak of COVID-19 in a large male prison in Wales, UK, 14 October 2020 to 21 April 2021, and discuss control measures. Methods We gathered case-information, including: demographics, staff-residence postcode, resident cell number, work areas/dates, test results, staff interview dates/notes and resident prison-transfer dates. Epidemiological curves were mapped by prison location. Control measures included isolation (exclusion from work or cell-isolation), cohorting (new admissions and work-area groups), asymptomatic testing (case-finding), removal of communal dining and movement restrictions. Facemask use and enhanced hygiene were already in place. Whole genome sequencing (WGS) and interviews determined genetic relationship between cases plausibility of transmission. Results Of 453 cases, 53% (n=242) were staff, most aged 25-34 years (11.5% females, 27.15% males) and symptomatic (64%). Crude attack-rate was higher in staff (29%, 95%CI: 26-64%) than in residents (12%, 95%CI: 9-15%). Conclusions Whole genome sequencing can help differentiate multiple introductions from person-to-person transmission in prisons. It should be introduced alongside asymptomatic testing as soon as possible to control prison outbreaks. Timely epidemiological investigation, including data visualization, allowed dynamic risk assessment and proportionate control measures, minimizing reduction in resident welfare.


Subject(s)
COVID-19 , Genomic Instability
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.18.21258689

ABSTRACT

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern, but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of two months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.

4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.22.21254006

ABSTRACT

Currently the primary method for confirming acute SARS-CoV-2 infection is through the use of molecular assays that target highly conserved regions within the viral genome. Many, if not most of the diagnostic targets currently in use were produced early in the pandemic, using genomes sequenced and shared in early 2020. As viral diversity increases, mutations may arise in diagnostic target sites that have an impact on the performance of diagnostic tests. Here, we report on a local outbreak of SARS-CoV-2 which had gained an additional mutation at position 28890 of the nucleocapsid protein, on a background of pre-existing mutations at positions 28881, 28882, 28883 in one of the main circulating viral lineages in Wales at that time. The impact of this additional mutation had a statistically significant impact on the Ct value reported for the N gene target designed by the Chinese CDC and used in a number of commercial diagnostic products. Further investigation identified that, in viral genomes sequenced from Wales over the summer of 2020, the N gene had a higher rate of mutations in diagnostic target sites than other targets, with 115 issues identified affecting over 10% of all cases sequenced between February and the end of August 2020. In comparison an issue was identified for ORFab, the next most affected target, in less than 1.4% of cases over the same time period. This work emphasises the potential impact that mutations in diagnostic target sites can have on tracking local outbreaks, as well as demonstrating the value of genomics as a routine tool for identifying and explaining potential diagnostic primer issues as part of a laboratory quality management system. This work also indicates that with increasing genomic sequencing data availability, there is a need to re-evaluate the diagnostic targets that are in use for SARS-CoV-2 testing, to better target regions that are now demonstrated to be of lower variability.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.31.20166082

ABSTRACT

Global dispersal and increasing frequency of the SARS-CoV-2 Spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of Spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large data set, well represented by both Spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the Spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL